Learning About Exoplanets

For generations, people have always wondered what life might exist in the universe besides ours. It has become a hot topic in movies, books, and of course, science.

Before even reaching space, humans have always hypothesized about “The Great Beyond” So far we have not found alternative life, but we have made significant progress. 

On major discovery is exoplanets. It seems pretty obvious that extraterrestrial life must exist on another planet, however before we can find life, we must find planets that can support it. 

An exoplanet by definition is a planet outside our solar system that orbits a star(1). The first scientific detection of an exoplanet was in 1988, although we have hypothesized the existence of exoplanets for over 100 years. 

Although we know have the technology to find exoplanets semi-regularly (the current number of known planets is almost 4,000), scientists are looking for planets in what is called the habitable zone (also called the Goldilocks zone). This arbitrary zone describes planets that are just far enough from their sun to support liquid water, but not too far to cause it to freeze. 

1920px-Diagram_of_different_habitable_zone_regions_by_Chester_Harman
An example of the habitable zone and a few exoplanets that exist within a habitable zone. Source

Of course, it takes more than possessing water to host life on a planet. Since, we only have one example to go off of, scientists are looking for planets most similar to our own. As of now there is an estimated 40 billion planets Earth-sized and orbiting the habitable zone of stars we have yet to discover(2). It’s these planets that we are most interested in.

In fact, recently a group of scientists met and explained how water should not be the only candidate for a planet within the habitable zone able to host liquid water. Certain geological structures are necessary to allow growth of organisms and proper collection of minerals that can give life a better chance (4).

With new discoveries and scientific advancements, researchers are also trying to unravel the mysteries of exoplanet geology. 

The research even has a name. Exogeology. This area brings together scientists from the field of astronomy, planetary scientists, and geologists together with the task to reveal what exoplanets look like from a geological perspective(3).

One of the best tools we have to decipher exoplanet surfaces, called the Z machine, has just begun scratching the surface in exploring exoplanet material. 

This machine is currently the largest high frequency electromagnetic wave generator, and its purpose within this context is to test various materials under extreme temperature and pressure  (5).

While we are not able to travel to exoplanets yet, we are now working to understand them as best as possible by working to create artificial environments we would normally see to try and discern how exoplanets behave.  

With more information, we can better understand exoplanets, and focus our attentions on those with the best chances of other beings. Perhaps one of them may write a blog with us someday.

As always, be sure to leave a comment with any questions. You can also reach us on Facebook, Twitter, and Tumblr.

Remember to be curious, and stay mindful!

Written By: Cody Wolf 

Sources:

  1. https://en.wikipedia.org/wiki/Exoplanet
  2. https://en.wikipedia.org/wiki/List_of_potentially_habitable_exoplanets
  3. https://www.nature.com/articles/d41586-017-07844-y
  4. http://www.nature.com/news/exoplanet-hunters-rethink-search-for-alien-life-1.23023
  5. https://en.wikipedia.org/wiki/Z_Pulsed_Power_Facility

Featured Image: https://wallpapercave.com/cool-planet-backgrounds

Advertisements

Making Art With DNA

Since the 1980’s, scientists have been making shapes out of DNA. In recent years, technological advances have increased to the point where we can now make beautiful designs from the molecule that encodes our existence. It’s called DNA Origami.

The idea is relatively simple. A single strand of a DNA molecule is used as a scaffold. The scaffold is then molded to design the shape desired with “staple molecules” or short complementary sequences of DNA that will fold the scaffold strand.

2_1
An example of Scaffold and Staple DNA construction. Source

With the right computer programs, you can make a wide variety of shapes, including smiley faces, teddy bears, or even a box equipped with a lid and a lock.

Of course, it’s always fun when scientists get to play around, but there are some pretty impressive applications to this technique as well.

Scientists have been adapting DNA origami to form various objects (a sphere, or a box) able to carry drugs to a target site within the body. For example, chemotherapy and immunotherapy drugs for cancer patients wreak havoc on the body. However, if they are able to be transferred to the tumor itself, not only would you have reduced toxicity, you would also potentially increase your chance of destroying the tumor.

2016_SL_Origami_twosmileys
An example of various shapes that can be made with DNA origami. Source

Others have also worked to create “nanobots” (extremely small functional robots) from DNA. These nanobots reportedly have the capability of being pre-programmed to travel to certain areas and perform basic functions. While the technology is very new and has not been tested in humans yet, it appears to be a promising avenue of research.

While DNA origami technology has come a long way, scientists have been limited on one aspect; size.

Currently, the largest a DNA origami shape could be is about 100 nanometers. If larger than that, the shapes loose their stability.

Yesterday however, four papers published in Nature describes methods of evading this problem.

origamiexamples
DNA Origami box. Source

By creating small DNA origami V-shaped structures and allowing them to link together, scientists have overcome the size restrains. These structures can then be used to make large, stable structures like the sphere below.

nature origami 1
A representation of the DNA V building blocks. Source

These larger spheres then possess the capability of carrying a wide variety of items, including drugs for various diseases.

 

Researchers also developed a new design software that can generate pictures and make DNA origami representations of pictures, like the Mona Lisa for example.

 

 

nature origami 2
Representations of the size of molecules able to be generated with new DNA origami techniques. Source

Another complicating aspect to DNA origami is price. Creating the proper strands to make these complex structures takes a lot of time, and a lot of resources. One way to overcome the price is to develop a long single stranded DNA molecule that possess not only the staple and scaffold strands, but also section able to break apart the other sections of the same molecule (called a DNAzyme). This one strand will therefore be able to cleave the scaffold and staple strands from itself and be able to make the structure, thus decreasing the cost.

 

The advancement of creating DNA structures has been fascinating to watch the last decade, and with these new advancements, DNA origami technology will quickly become a pioneer technique in a variety of scientific fields.

As always, if you have questions, please comment below or email us directly at copernicuscalledblog@gmail.com.

You can also reach us on our various social media outlets, including Facebook, Twitter, and Tumblr.

Sources:

  1. Service, Robert F., Scientists shape DNA into doughnuts, teddy bears, and an image of the Mona Lisa. Science. http://www.sciencemag.org/news/2017/12/scientists-shape-dna-doughnuts-teddy-bears-and-image-mona-lisa
  2. Zhang, Fei, Yan, Hao. DNA self-assembly scaled up. Nature. https://www.nature.com/articles/d41586-017-07690-y#ref-CR2
  3. https://www.nature.com/articles/d41586-017-07690-y#ref-CR2
  4. Wagenbauer, K. F. et al. Nature 552, 78–83 (2017)
  5. Tikhomirov, G. et al. Nature 552, 67–71 (2017).
  6. Featured image- https://www.yourgenome.org/activities/origami-dna

 

 

 

 

 

 

 

 

Teenage Nutrition Study Goes Wrong

In research, it is crucial to not only ensure that data collected is meaningful and sound, but also that subjects (whether it be animals or humans) are treated properly.

Recent stories have been released in regards to a nutrition study from researchers at Purdue University that highlight examples of what not to do in a scientific study.

The purpose of the study was to evaluate the effects of low sodium diets on adolescent children with high blood pressure. Children were signed up for a seven week trial over a summer that placed them in campus housing. The project was dubbed Camp DASH, an abbreviation for Dietary Approaches to Stop Hypertension(1,2).

Everything went awry after a video of one of the girl participants showering appeared on social media. The police were notified and other accusations arose involving additional children within the study.

It appears from the start, the study was inadequate in planning, and was not fully prepared for hosting the adolescent children.

Within the first week of the study, it was reported that two participants were arrested due to violence among the adolescent children. Injuries were severe enough warrant a hospital visit for one of the participants. Both of the children were removed from the study, but this highlights the first of many faults in this study; lack of proper supervision(1,2)

Just one week after the two were dismissed, another accusation arose involving one male participant sexually harassing several of the female participants. The male was ejected from the study, but the harassment was not reported to necessary university personnel.(1)

During an unsupervised sauna session, a male reportedly burned another male participant with a hot rock that left second degree burns(1,2)

These are just a few examples of the many incidences that occurred during the time of the study.

The principal investigator of Camp DASH, Dr. Connie Weaver, has been brought under scrutiny for the research, and from the reports, it appears to be just.

Dr. Weaver was notified throughout the entire study of the misconduct going on, and did not make the proper corrections to ensure the safety of the children within the study(1)

In a statement released earlier this week, Dr. Weaver commented on allegations arising from the study.

“I am deeply saddened by the instances that caused Camp DASH to end early. As the principal investigator, I accept responsibility for events that occurred at Camp DASH. The safety and security of research participants always comes first.” (3)

Not only were the accusations hidden, but personnel staff were not properly screened before beginning the study.

Every hired member of the camp  were required to undergo a detailed background check. Only seven of the 132 members were screened (2). Furthermore, each member on the staff was required to complete online training before the study began. Thirteen percent of staff members did not complete the training, including the Camp Manager, who did not complete his training until the day he was terminated.

As a result of the problems within the study, the university ended it two weeks prior to its scheduled completion date, and all of the data generated from the study was discarded.

This is a perfect example of research misconduct during human trials. Not only did the principal investigator overlook accusations, she did fulfill the duties of keeping the subjects safe that were specifically written during her proposal.

This neglect thus resulted in directly wasting 8.8 million dollars from the NIH (federal funding source), and placing over 70 adolescent children in an environment leading to violence and sexual harassment(2).

While the principal investigator and university staff overseeing Camp DASH have not been directly reprimanded, we expect more news to be released as the story develops.

Be sure to look for our updates as news continues.

 

We recommend that if you are interested, to read this detailed report written by Alysa Rollock, the Vice President for Ethics and Compliance at Purdue University.

As always, if you have any questions or comments, feel free to comment below or email us directly at copernicuscalledlblog@gmail.com

 

You can also reach us on Facebook, Twitter, and Tumblr.

 

Written By: Cody Wolf

Sources

  1. Rollock, Alysa. “Report on Review and Assessment of Purdue University’s Actions in Connection with the Camp DASH Research Study. Accessed online 12/1/2017. https://www.purdue.edu/newsroom/documents/campdash-report.pdf

 

  1. Gastelum, Amy. “Purdue University Mounted a Child Nutrition Study. It Went Very, Very Wrong.” Undark.org. https://undark.org/article/purdue-camp-dash-nutrition-weaver/

 

  1. Menchaca, Mateo. “Purdue review board throws out Camp DASH data.” The Exponent. https://www.purdueexponent.org/campus/article_5ec9584b-1565-502d-a6f5-f49498411138.html